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Chiral base route to functionalised cyclopentenyl amines:
formal synthesis of the cyclopentene core of nucleoside Q
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Abstract—A chiral base route to a range of highly functionalised amino cyclopentenes has been developed. The key asymmetric step
involved the chiral lithium amide base-mediated rearrangement of a protected trans-4-hydroxy cyclopentene oxide to give an allylic
alcohol (88% ee). Subsequent Overman rearrangement gave a protected trans-1,2-aminocyclopentenol whereas Mitsunobu substi-
tution with BocNHNs gave a protected cis-amino cyclopentenol. Both are proven intermediates for natural product synthesis.
The protected cis-aminocyclopentenol was transformed in a few steps into a precursor of the cyclopentene core of nucleoside Q,
a natural product whose deficiency in animals is related to tumour growth.

© 2004 Elsevier Ltd. All rights reserved.

Our group has an ongoing interest in the use of chiral
base methodology for the synthesis of cyclic allylic
amines.! # Recently, we turned our attention to develop-
ing a chiral base route to the cyclopentene fragment of
nucleoside Q.°> Nucleoside Q, also known as queuosine,
is widely distributed in tRNAs of plants and animals®
and is of current interest since deficiency of nucleoside
Q is related to tumour growth.” Recent synthetic
work® 1! has culminated in two enantioselective synthe-
ses of the cyclopentene core, independently developed
by Kim and Miller!® and Trost and Sorum.!! The
penultimate compound in Miller’s route was amino
alcohol 1'2 which was mesylated and eliminated using
a dilute solution of DBU to give an allylic amine suit-
able for nucleoside Q synthesis.!® Racemic 1 and its
Boc-deprotected version have also been utilised in routes
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to antiviral carbocyclic nucleoside analogues and

the antitumour compound neoplanacin A.'3

Our proposed route to the key intermediate, amino alco-
hol 1, is outlined below. Amino alcohol 1 would be
derived from amino cyclopentenol 2,'¢ itself obtained
by a Mitsunobu reaction on allylic alcohol 3 using an
appropriate nitrogen source. The chiral base-mediated
rearrangement of epoxide trans-4 would be used to
produce the required allylic alcohol 3. Although much
is known on the rearrangement of the corresponding
cis-cyclopentene oxides,'”!® we were surprised to find
that the best enantioselectivity for rearrangement of
epoxide trans-4 (P =TBS) was only 73% ee.!8® This
observation encouraged us to implement this particular
chiral base strategy for the synthesis of amino alcohol 1.
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Furthermore, we also developed syntheses of a range of
functionalised amino cyclopentenes that have been suc-
cessfully employed in a range of synthetic endeavours by
other groups (vide infra). Herein we describe our results.

To start with, commercially available 3-cyclopenten-1-
ol was TBDPS-protected and epoxidised using
m-CPBA in cyclohexane to give a good (64%) isolated
yield of epoxide trans-6. The trans-selectivity was
much lower in dichloromethane but this produced the
highest isolated yield of the diastercomeric epoxide
cis-6 (40%).18520 Next, the key chiral base-mediated
rearrangements were investigated. After a screen of alco-
hol protecting group and chiral base structure, we found
that rearrangement of the TBDPS-protected epoxides
trans- and cis-6 using our?! norephedrine-derived chiral
bases (1S,2R)-7 and (1R,2S)-7 were optimal in terms of
yield and enantioselectivity. Reaction of epoxide trans-6
using (1S,2R)-7 gave allylic alcohol 8 {[«]p +56.7 (¢ 1.0,
CHCl3)} in 76% yield and 88% ee (by Mosher’s ester
formation). Significantly, this is a 15% ee improvement
on the highest previously reported enantioselectivity
for rearrangement of a protected trans-4-hydroxycyclo-
pentene oxide.'®>" Under similar conditions, epoxide
cis-6 was rearranged using (1R,2S)-7 to give allylic alco-
hol 11 {[a]p +22.0 (¢ 1.0, CHCl3)} in 54% yield and 85%
ee. Similarly high enantioselectivity for the rearrange-
ment of other protected cis-4-hydroxycyclopentene
oxides has been reported by other groups.'8'

Although allylic alcohol 8 was of more interest due to
our proposed nucleoside Q synthesis, we converted both
allylic alcohols 8 and 11 into their corresponding amino
ethers. For this, a Mitsunobu protocol using BocNHN5s
(Ns = 0-NO,C4H3S0,-), independently developed by
ourselves*?? and Fukuyama and co-workers,>® was
used. Thus, reaction of allylic alcohol 8 with
BocNHNs/PPhs/DIAD gave amino ether 9 which was
smoothly deprotected using mercaptoacetic acid to give
partially deprotected amino ether 10, suitable for nucleo-
side Q synthesis. In the same way, allylic alcohol 11
gave amino ether 12 and thence NHBoc amino ether
13. Each of 8-13 are useful synthetic building blocks.
As examples, Ogasawara and co-workers used a differ-
ently protected version of ent-10 in a concise route to
(-)-kainic acid;?* Trost et al. prepared a carbovir precur-

sor from a benzoate ester of ent-10;'°" Miller and co-
workers described the conversion of an acetate ester of
ent-10 into (+)-uracilpolyoxin C?* and Schaudt and
Blechert converted the N-allylated amino alcohol of 13
into (+)-astrophylline.'® Our route to these key inter-
mediates is notable since either enantiomer of 8-13
can be obtained simply by using the appropriate enantio-
mer of chiral base 7 and epoxide frans- or cis-6.

Further transformations into other useful compounds
were also explored. Thus, Overman rearrangement®® of
allylic alcohol 8 gave a 54% yield of allylic amide 14,
analogous to a compound used by Johnson and co-
workers in the synthesis of natural 3-hydroxyproline.?’
Alternatively, deprotection of amino ether 10 using
TBAF gave amino alcohol 15 {[o]p —56.3 (¢ 1.0,
CHCl3), 88% ee} of known absolute stereochemistry
{[¢]p —69.0 (c 1.0, CHCI;) for 15 of 98% ee®®} thus con-
firming the stereochemical assignments in this series of
compounds. Dess—Martin periodinane oxidation of 15
then generated amino ketone 16 {[o]p —51.1 (¢ 1.0 in
CHCl5) (lit.,'%? [o]p +69.6 (¢ 2.6 in CHCI;) for ent-16
of >99% ee)} which has recently been used by Lee
and Miller to prepare 4-acylamino analogues of
LY354740%® and by Roberts and co-workers for the
synthesis of some novel prostaglandin analogues.?’
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With a range of synthetically useful compounds pre-
pared, we then completed our planned synthesis of Mill-
er’s nucleoside Q intermediate, amino alcohol 1. Thus,
amino ether 10 (easily prepared in five steps from com-
mercially available 3-cyclopenten-1-01'°) was subjected
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to standard Upjohn dihydroxylation followed by aceto-
nide formation. In this way, acetonide 17 was obtained
as a single diastereomer in 84% yield over the two steps.
The steric bulk and the cis arrangement of the NHBoc
and silyl ether groups in 10 ensured a highly diastereo-
selective dihydroxylation process.’® Finally, TBAF
deprotection of the silyl ether in 17 produced amino
alcohol 1 of 88% ee, [o]p —18.6 (¢ 1.0 in CH,Cly)
{lit.,'? [e]p —20.2 (¢ 0.95, CH,Cl,) for 1 of >98% ee},
identical in all respects to that previously described.!>!4
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In summary, the chiral base-mediated rearrangement of
an epoxide (trans-6 — 8) is the key step in a new route to
amino alcohol 1, an important intermediate in the
synthesis of the cyclopentene fragment of nucleoside
Q, carbocyclic nucleoside analogues and neoplanacin
A. A range of other stereodefined, functionalised
cyclopentenyl amine building blocks have also been
prepared.
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